Cargando…
Graph Embedding for Pattern Analysis
Graph Embedding for Pattern Analysis covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, gr...
Autores principales: | Fu, Yun, Ma, Yunqian |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4614-4457-2 http://cds.cern.ch/record/1500223 |
Ejemplares similares
-
Embedded graphs
por: Lando, S, et al.
Publicado: (2001) -
Ensemble Machine Learning: Methods and Applications
por: Zhang, Cha, et al.
Publicado: (2012) -
Support vector machines applications
por: Ma, Yunqian, et al.
Publicado: (2014) -
Characterizing the Complexity of Weighted Networks via Graph Embedding and Point Pattern Analysis
por: Chen, Shuo, et al.
Publicado: (2020) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021)