Cargando…

Minimum Error Entropy Classification

This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and...

Descripción completa

Detalles Bibliográficos
Autores principales: Marques de Sá, Joaquim P, Silva, Luís M A, Santos, Jorge M F, Alexandre, Luís A
Lenguaje:eng
Publicado: Springer 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-29029-9
http://cds.cern.ch/record/1500274
_version_ 1780926875056472064
author Marques de Sá, Joaquim P
Silva, Luís M A
Santos, Jorge M F
Alexandre, Luís A
author_facet Marques de Sá, Joaquim P
Silva, Luís M A
Santos, Jorge M F
Alexandre, Luís A
author_sort Marques de Sá, Joaquim P
collection CERN
description This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
id cern-1500274
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
publisher Springer
record_format invenio
spelling cern-15002742021-04-22T00:01:52Zdoi:10.1007/978-3-642-29029-9http://cds.cern.ch/record/1500274engMarques de Sá, Joaquim PSilva, Luís M ASantos, Jorge M FAlexandre, Luís AMinimum Error Entropy ClassificationEngineeringThis book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.Springeroai:cds.cern.ch:15002742013
spellingShingle Engineering
Marques de Sá, Joaquim P
Silva, Luís M A
Santos, Jorge M F
Alexandre, Luís A
Minimum Error Entropy Classification
title Minimum Error Entropy Classification
title_full Minimum Error Entropy Classification
title_fullStr Minimum Error Entropy Classification
title_full_unstemmed Minimum Error Entropy Classification
title_short Minimum Error Entropy Classification
title_sort minimum error entropy classification
topic Engineering
url https://dx.doi.org/10.1007/978-3-642-29029-9
http://cds.cern.ch/record/1500274
work_keys_str_mv AT marquesdesajoaquimp minimumerrorentropyclassification
AT silvaluisma minimumerrorentropyclassification
AT santosjorgemf minimumerrorentropyclassification
AT alexandreluisa minimumerrorentropyclassification