Cargando…

A Rapid Introduction to Adaptive Filtering

In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Vega, Leonardo Rey, Rey, Hernan
Lenguaje:eng
Publicado: Springer 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-30299-2
http://cds.cern.ch/record/1500299
_version_ 1780926880469221376
author Vega, Leonardo Rey
Rey, Hernan
author_facet Vega, Leonardo Rey
Rey, Hernan
author_sort Vega, Leonardo Rey
collection CERN
description In this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.
id cern-1500299
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
publisher Springer
record_format invenio
spelling cern-15002992021-04-22T00:01:37Zdoi:10.1007/978-3-642-30299-2http://cds.cern.ch/record/1500299engVega, Leonardo ReyRey, HernanA Rapid Introduction to Adaptive FilteringEngineeringIn this book, the authors provide insights into the basics of adaptive filtering, which are particularly useful for students taking their first steps into this field. They start by studying the problem of minimum mean-square-error filtering, i.e., Wiener filtering. Then, they analyze iterative methods for solving the optimization problem, e.g., the Method of Steepest Descent. By proposing stochastic approximations, several basic adaptive algorithms are derived, including Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and Sign-error algorithms. The authors provide a general framework to study the stability and steady-state performance of these algorithms. The affine Projection Algorithm (APA) which provides faster convergence at the expense of computational complexity (although fast implementations can be used) is also presented. In addition, the Least Squares (LS) method and its recursive version (RLS), including fast implementations are discussed. The book closes with the discussion of several topics of interest in the adaptive filtering field.Springeroai:cds.cern.ch:15002992013
spellingShingle Engineering
Vega, Leonardo Rey
Rey, Hernan
A Rapid Introduction to Adaptive Filtering
title A Rapid Introduction to Adaptive Filtering
title_full A Rapid Introduction to Adaptive Filtering
title_fullStr A Rapid Introduction to Adaptive Filtering
title_full_unstemmed A Rapid Introduction to Adaptive Filtering
title_short A Rapid Introduction to Adaptive Filtering
title_sort rapid introduction to adaptive filtering
topic Engineering
url https://dx.doi.org/10.1007/978-3-642-30299-2
http://cds.cern.ch/record/1500299
work_keys_str_mv AT vegaleonardorey arapidintroductiontoadaptivefiltering
AT reyhernan arapidintroductiontoadaptivefiltering
AT vegaleonardorey rapidintroductiontoadaptivefiltering
AT reyhernan rapidintroductiontoadaptivefiltering