Cargando…

Oscillations des neutrinos sur et hors faisceau : étude des performances du système d'acquisition d'OPERA

OPERA (" Oscillation Project with Emulsion-tRacking Apparatus ") is a neutrino beam experiment located in hall C of the Gran Sasso underground laboratory (LNGS), in Italia, under a equivalent of 3.8 km water (corresponding to a cut at 1.5 TeV for the muons). The first purpose of OPERA is t...

Descripción completa

Detalles Bibliográficos
Autor principal: Brugière, Timothée
Lenguaje:fre
Publicado: 2012
Materias:
Acceso en línea:http://cds.cern.ch/record/1500482
Descripción
Sumario:OPERA (" Oscillation Project with Emulsion-tRacking Apparatus ") is a neutrino beam experiment located in hall C of the Gran Sasso underground laboratory (LNGS), in Italia, under a equivalent of 3.8 km water (corresponding to a cut at 1.5 TeV for the muons). The first purpose of OPERA is the direct observation of the νμ ➝ ντ oscillation in the atmospheric sector observing an ντ appearance 730 km away from the target in a quasi pure νμ beam (CNGS). OPERA is an hybrid detector with an instrumented target part (~125 000 bricks made with emulsion and lead sheets) and a spectrometer. The data taking have started in 2006 and 55 000 events have been registred. The first ντ candidate have been observed this year. The work done during this thesis is oriented around three main topics : Define the trigger rules of the target tracker acquisition system for beam neutrino events, synchronise target tracker and RPC elements, implement the results inside the simulation and the study of the feasibility of an atmospheric neutrino analysis using off-beam data. The new trigger rules succeeds to reach the values of OPERA proposal, ie a trigger efficiency greater than 99%. This improvement have been done thanks to coincidence time windows with the CNGS beam during which lower cut are applied, allowing low multiplicity events to be kept. A deep study of electronic detectors intercalibration makes possible the target tracker and RPC data synchronisation. The analysis results are now included in the official simulation. This calibration work have been then used for a study of " off-beam " atmospheric neutrino oscillation thanks to the selection of up-going particles. The analysis showed in the thesis have improved the OPERA detector understanding and demonstrate the feasability of an observation of phenomenoms independant from the CNGS beam. Analysis on atmospherics neutrino detection and muons flux caracterisation (seasonal variations for example) are now possible thanks to the accumulated statistics and the deeper understanding of the acquisition systems. Correction on signal propagation inside the electronic detectors are now used for a neutrino velocity measurement.