Cargando…
Multiphase Microfluidics The Diffuse Interface Model
Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happ...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-7091-1227-4 http://cds.cern.ch/record/1501867 |
_version_ | 1780927078789545984 |
---|---|
author | Mauri, Roberto |
author_facet | Mauri, Roberto |
author_sort | Mauri, Roberto |
collection | CERN |
description | Multiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries. |
id | cern-1501867 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2012 |
publisher | Springer |
record_format | invenio |
spelling | cern-15018672021-04-21T23:55:38Zdoi:10.1007/978-3-7091-1227-4http://cds.cern.ch/record/1501867engMauri, RobertoMultiphase Microfluidics The Diffuse Interface ModelEngineeringMultiphase flows are typically described assuming that the different phases are separated by a sharp interface, with appropriate boundary conditions. This approach breaks down whenever the lengthscale of the phenomenon that is being studied is comparable with the real interface thickness, as it happens, for example, in the coalescence and breakup of bubbles and drops, the wetting and dewetting of solid surfaces and, in general, im micro-devices. The diffuse interface model resolves these probems by assuming that all quantities can vary continuously, so that interfaces have a non-zero thickness, i.e. they are "diffuse". The contributions in this book review the theory and describe some relevant applications of the diffuse interface model for one-component, two-phase fluids and for liquid binary mixtures, to model multiphase flows in confined geometries.Springeroai:cds.cern.ch:15018672012 |
spellingShingle | Engineering Mauri, Roberto Multiphase Microfluidics The Diffuse Interface Model |
title | Multiphase Microfluidics The Diffuse Interface Model |
title_full | Multiphase Microfluidics The Diffuse Interface Model |
title_fullStr | Multiphase Microfluidics The Diffuse Interface Model |
title_full_unstemmed | Multiphase Microfluidics The Diffuse Interface Model |
title_short | Multiphase Microfluidics The Diffuse Interface Model |
title_sort | multiphase microfluidics the diffuse interface model |
topic | Engineering |
url | https://dx.doi.org/10.1007/978-3-7091-1227-4 http://cds.cern.ch/record/1501867 |
work_keys_str_mv | AT mauriroberto multiphasemicrofluidicsthediffuseinterfacemodel |