Cargando…
Automating the Analysis of Spatial Grids: A Practical Guide to Data Mining Geospatial Images for Human & Environmental Applications
The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and...
Autor principal: | Lakshmanan, Valliappa |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-94-007-4075-4 http://cds.cern.ch/record/1501913 |
Ejemplares similares
-
Google BigQuery: the definitive guide : data warehousing, analytics, and machine learning at scale
por: Lakshmanan, Valliappa, et al.
Publicado: (2019) -
Data science on the Google Cloud Platform: implementing end-to-end real-time data pipelines : from ingest to machine learning
por: Lakshmanan, Valliappa
Publicado: (2018) -
Automated guided vehicle systems: a primer with practical applications
por: Ullrich, Günter
Publicado: (2015) -
Practical Machine Learning for Computer Vision
por: Lakshmanan, Valliappa, et al.
Publicado: (2021) -
Educational data mining: applications and trends
por: Peña-Ayala, Alejandro
Publicado: (2014)