Cargando…
Low Rank Approximation: Algorithms, Implementation, Applications
Matrix low-rank approximation is intimately related to data modelling; a problem that arises frequently in many different fields. Low Rank Approximation: Algorithms, Implementation, Applications is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approxim...
Autor principal: | Markovsky, Ivan |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2012
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-1-4471-2227-2 http://cds.cern.ch/record/1503641 |
Ejemplares similares
-
Robust Generalized Low Rank Approximations of Matrices
por: Shi, Jiarong, et al.
Publicado: (2015) -
Lower bounds for the low-rank matrix approximation
por: Li, Jicheng, et al.
Publicado: (2017) -
Handbook of robust low-rank and sparse matrix decomposition: applications in image and video processing
por: Bouwmans, Thierry, et al.
Publicado: (2016) -
Self-organizing migrating algorithm: methodology and implementation
por: Davendra, Donald, et al.
Publicado: (2016) -
Granular computing in decision approximation: an application of rough mereology
por: Polkowski, Lech, et al.
Publicado: (2015)