Cargando…
Effects of RF breakdown on the beam in a CLIC prototype accelerator structure
Understanding the effects of RF breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. D...
Autores principales: | , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevSTAB.16.081004 https://dx.doi.org/10.1103/PhysRevSTAB.16.129901 http://cds.cern.ch/record/1507954 |
_version_ | 1780927538556567552 |
---|---|
author | Palaia, A. Jacewicz, M. Ruber, R. Ziemann, V. Farabolini, W. |
author_facet | Palaia, A. Jacewicz, M. Ruber, R. Ziemann, V. Farabolini, W. |
author_sort | Palaia, A. |
collection | CERN |
description | Understanding the effects of RF breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a RF breakdown large electro-magnetic fields are generated and produce parasitic magnetic fields which interact with the accelerated beam affecting its orbit and energy. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch-trains on a nanosecond time-scale showed fast changes in correspondence of breakdown which we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam orbit and we discuss its correlation with RF power and breakdown location in the accelerator structure. |
id | cern-1507954 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
record_format | invenio |
spelling | cern-15079542021-05-03T20:15:51Zdoi:10.1103/PhysRevSTAB.16.081004doi:10.1103/PhysRevSTAB.16.129901http://cds.cern.ch/record/1507954engPalaia, A.Jacewicz, M.Ruber, R.Ziemann, V.Farabolini, W.Effects of RF breakdown on the beam in a CLIC prototype accelerator structureAccelerators and Storage RingsUnderstanding the effects of RF breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a RF breakdown large electro-magnetic fields are generated and produce parasitic magnetic fields which interact with the accelerated beam affecting its orbit and energy. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch-trains on a nanosecond time-scale showed fast changes in correspondence of breakdown which we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam orbit and we discuss its correlation with RF power and breakdown location in the accelerator structure.Understanding the effects of RF breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a RF breakdown large electro-magnetic fields are generated and produce parasitic magnetic fields which interact with the accelerated beam affecting its orbit and energy. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch-trains on a nanosecond time-scale showed fast changes in correspondence of breakdown which we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam orbit and we discuss its correlation with RF power and breakdown location in the accelerator structure.Understanding the effects of rf breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a rf breakdown high currents are generated causing parasitic magnetic fields that interact with the accelerated beam affecting its orbit. The beam energy is also affected because the power is partly reflected and partly absorbed thus reducing the available energy to accelerate the beam. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch trains on a nanosecond time scale showed fast changes in correspondence of breakdown that we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of the magnitude of the observed changes in the beam position and we discuss its correlation with rf power and breakdown location in the accelerator structure.arXiv:1301.4673oai:cds.cern.ch:15079542013-01-22 |
spellingShingle | Accelerators and Storage Rings Palaia, A. Jacewicz, M. Ruber, R. Ziemann, V. Farabolini, W. Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title | Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title_full | Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title_fullStr | Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title_full_unstemmed | Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title_short | Effects of RF breakdown on the beam in a CLIC prototype accelerator structure |
title_sort | effects of rf breakdown on the beam in a clic prototype accelerator structure |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1103/PhysRevSTAB.16.081004 https://dx.doi.org/10.1103/PhysRevSTAB.16.129901 http://cds.cern.ch/record/1507954 |
work_keys_str_mv | AT palaiaa effectsofrfbreakdownonthebeaminaclicprototypeacceleratorstructure AT jacewiczm effectsofrfbreakdownonthebeaminaclicprototypeacceleratorstructure AT ruberr effectsofrfbreakdownonthebeaminaclicprototypeacceleratorstructure AT ziemannv effectsofrfbreakdownonthebeaminaclicprototypeacceleratorstructure AT faraboliniw effectsofrfbreakdownonthebeaminaclicprototypeacceleratorstructure |