Cargando…

Non-Gaussian bias: insights from discrete density peaks

Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Desjacques, Vincent, Gong, Jinn-Ouk, Riotto, Antonio
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1475-7516/2013/09/006
http://cds.cern.ch/record/1512709
_version_ 1780928146768396288
author Desjacques, Vincent
Gong, Jinn-Ouk
Riotto, Antonio
author_facet Desjacques, Vincent
Gong, Jinn-Ouk
Riotto, Antonio
author_sort Desjacques, Vincent
collection CERN
description Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.
id cern-1512709
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
record_format invenio
spelling cern-15127092023-03-14T18:29:10Zdoi:10.1088/1475-7516/2013/09/006http://cds.cern.ch/record/1512709engDesjacques, VincentGong, Jinn-OukRiotto, AntonioNon-Gaussian bias: insights from discrete density peaksAstrophysics and AstronomyCorrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However,numerical simulations clearly support the prediction of the former, in which thenon-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in whichthe halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.Corrections induced by primordial non-Gaussianity to the linear halo bias can be computed from a peak-background split or the widespread local bias model. However, numerical simulations clearly support the prediction of the former, in which the non-Gaussian amplitude is proportional to the linear halo bias. To understand better the reasons behind the failure of standard Lagrangian local bias, in which the halo overdensity is a function of the local mass overdensity only, we explore the effect of a primordial bispectrum on the 2-point correlation of discrete density peaks. We show that the effective local bias expansion to peak clustering vastly simplifies the calculation. We generalize this approach to excursion set peaks and demonstrate that the resulting non-Gaussian amplitude, which is a weighted sum of quadratic bias factors, precisely agrees with the peak-background split expectation, which is a logarithmic derivative of the halo mass function with respect to the normalisation amplitude. We point out that statistics of thresholded regions can be computed using the same formalism. Our results suggest that halo clustering statistics can be modelled consistently (in the sense that the Gaussian and non-Gaussian bias factors agree with peak-background split expectations) from a Lagrangian bias relation only if the latter is specified as a set of constraints imposed on the linear density field. This is clearly not the case of standard Lagrangian local bias. Therefore, one is led to consider additional variables beyond the local mass overdensity.arXiv:1301.7437APCTP-PRE2013-002CERN-PH-TH-2013-021APCTP-PRE2013-002CERN-PH-TH-2013-021oai:cds.cern.ch:15127092013-02-01
spellingShingle Astrophysics and Astronomy
Desjacques, Vincent
Gong, Jinn-Ouk
Riotto, Antonio
Non-Gaussian bias: insights from discrete density peaks
title Non-Gaussian bias: insights from discrete density peaks
title_full Non-Gaussian bias: insights from discrete density peaks
title_fullStr Non-Gaussian bias: insights from discrete density peaks
title_full_unstemmed Non-Gaussian bias: insights from discrete density peaks
title_short Non-Gaussian bias: insights from discrete density peaks
title_sort non-gaussian bias: insights from discrete density peaks
topic Astrophysics and Astronomy
url https://dx.doi.org/10.1088/1475-7516/2013/09/006
http://cds.cern.ch/record/1512709
work_keys_str_mv AT desjacquesvincent nongaussianbiasinsightsfromdiscretedensitypeaks
AT gongjinnouk nongaussianbiasinsightsfromdiscretedensitypeaks
AT riottoantonio nongaussianbiasinsightsfromdiscretedensitypeaks