Cargando…
Topological Derivatives in Shape Optimization
The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, t...
Autores principales: | Novotny, Antonio André, Sokołowski, Jan |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-35245-4 http://cds.cern.ch/record/1513056 |
Ejemplares similares
-
An introduction to the topological derivative method
por: Novotny, Antonio André, et al.
Publicado: (2020) -
Applications of the topological derivative method
por: Novotny, Antonio André, et al.
Publicado: (2019) -
Introduction to shape optimization: shape sensitivity analysis
por: Sokolowski, Jan, et al.
Publicado: (1992) -
Compressible Navier-Stokes Equations: Theory and Shape Optimization
por: Plotnikov, Pavel, et al.
Publicado: (2012) -
Geometric Topology and Shape Theory
por: Mardešić, Sibe, et al.
Publicado: (1987)