Cargando…

Measurements of the Secondary Electron Emission of Some Insulators

Charging up the surface of an insulator after beam impact can lead either to reverse sign of field between the surface and collector of electrons for case of thick sample or appearance of very high internal field for thin films. Both situations discard correct measurements of secondary electron emis...

Descripción completa

Detalles Bibliográficos
Autores principales: Bozhko, Y., Barnard, J., Hilleret, N.
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:http://cds.cern.ch/record/1514931
Descripción
Sumario:Charging up the surface of an insulator after beam impact can lead either to reverse sign of field between the surface and collector of electrons for case of thick sample or appearance of very high internal field for thin films. Both situations discard correct measurements of secondary electron emission (SEE) and can be avoided via reducing the beam dose. The single pulse method with pulse duration of order of tens microseconds has been used. The beam pulsing was carried out by means of an analog switch introduced in deflection plate circuit which toggles its output between "beam on" and "beam off" voltages depending on level of a digital pulse. The error in measuring the beam current for insulators with high value of SEE was significantly reduced due to the use for this purpose a titanium sample having low value of the SEE with DC method applied. Results obtained for some not coated insulators show considerable increase of the SEE after baking out at 3500C what could be explained by the change of work function. Titanium coatings on alumina exhibit results close to the ones for pure titanium and could be considered as an effective antimultipactor coating.