Cargando…
Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation
Superconducting magnets based on Nb$_{3}$Sn technology are being developed for the LHC high luminosity upgrade. In this context irradiation induced changes of the superconducting properties of state-of-the-art Ti and Ta doped Nb$_{3}$Sn wires are presently studied. During irradiation tests with prot...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1109/TASC.2012.2233263 http://cds.cern.ch/record/1516050 |
_version_ | 1780928431061467136 |
---|---|
author | Otto, Th Scheuerlein, C Catherall, R Glaser, M Militaru, O Flükiger, R Ballarino, A Bottura, L |
author_facet | Otto, Th Scheuerlein, C Catherall, R Glaser, M Militaru, O Flükiger, R Ballarino, A Bottura, L |
author_sort | Otto, Th |
collection | CERN |
description | Superconducting magnets based on Nb$_{3}$Sn technology are being developed for the LHC high luminosity upgrade. In this context irradiation induced changes of the superconducting properties of state-of-the-art Ti and Ta doped Nb$_{3}$Sn wires are presently studied. During irradiation tests with protons of 65 MeV at the cyclotron of Université Catholique de Louvain (UCL), 1.4 GeV at the CERN ISOLDE facility, and 24 GeV at the CERN IRRAD1 facility, the superconductor samples become radioactive and their handling must follow the legal specifications for radioactive materials. We have estimated the activation and the resulting ambient dose equivalent rate up to a fluence of 1017 p/cm2 with the Monte-Carlo Code FLUKA. The estimates were verified with experimental activation spectra. Samples for magnetization measurements with a mass of approximately 20 mg have to be considered as radioactive, but they do not have the potential to harm the operators handling them at radiation levels below 1 uSv/h. Larger samples (longer wires and sample holder materials like Cu and TiAl6V4) show correspondingly higher ambient dose equivalent rates and activation levels and they must be handled by radiation workers in designated areas, taking into account the standard precautions for work with radioactive materials. The use of radiation shielding during handling is recommended. |
id | cern-1516050 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
record_format | invenio |
spelling | cern-15160502019-09-30T06:29:59Zdoi:10.1109/TASC.2012.2233263http://cds.cern.ch/record/1516050engOtto, ThScheuerlein, CCatherall, RGlaser, MMilitaru, OFlükiger, RBallarino, ABottura, LRadioactivity of Nb$_{3}$Sn/Cu wires after proton irradiationAccelerators and Storage RingsSuperconducting magnets based on Nb$_{3}$Sn technology are being developed for the LHC high luminosity upgrade. In this context irradiation induced changes of the superconducting properties of state-of-the-art Ti and Ta doped Nb$_{3}$Sn wires are presently studied. During irradiation tests with protons of 65 MeV at the cyclotron of Université Catholique de Louvain (UCL), 1.4 GeV at the CERN ISOLDE facility, and 24 GeV at the CERN IRRAD1 facility, the superconductor samples become radioactive and their handling must follow the legal specifications for radioactive materials. We have estimated the activation and the resulting ambient dose equivalent rate up to a fluence of 1017 p/cm2 with the Monte-Carlo Code FLUKA. The estimates were verified with experimental activation spectra. Samples for magnetization measurements with a mass of approximately 20 mg have to be considered as radioactive, but they do not have the potential to harm the operators handling them at radiation levels below 1 uSv/h. Larger samples (longer wires and sample holder materials like Cu and TiAl6V4) show correspondingly higher ambient dose equivalent rates and activation levels and they must be handled by radiation workers in designated areas, taking into account the standard precautions for work with radioactive materials. The use of radiation shielding during handling is recommended.CERN-ATS-2013-023oai:cds.cern.ch:15160502013-02-14 |
spellingShingle | Accelerators and Storage Rings Otto, Th Scheuerlein, C Catherall, R Glaser, M Militaru, O Flükiger, R Ballarino, A Bottura, L Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title | Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title_full | Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title_fullStr | Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title_full_unstemmed | Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title_short | Radioactivity of Nb$_{3}$Sn/Cu wires after proton irradiation |
title_sort | radioactivity of nb$_{3}$sn/cu wires after proton irradiation |
topic | Accelerators and Storage Rings |
url | https://dx.doi.org/10.1109/TASC.2012.2233263 http://cds.cern.ch/record/1516050 |
work_keys_str_mv | AT ottoth radioactivityofnb3sncuwiresafterprotonirradiation AT scheuerleinc radioactivityofnb3sncuwiresafterprotonirradiation AT catherallr radioactivityofnb3sncuwiresafterprotonirradiation AT glaserm radioactivityofnb3sncuwiresafterprotonirradiation AT militaruo radioactivityofnb3sncuwiresafterprotonirradiation AT flukigerr radioactivityofnb3sncuwiresafterprotonirradiation AT ballarinoa radioactivityofnb3sncuwiresafterprotonirradiation AT bottural radioactivityofnb3sncuwiresafterprotonirradiation |