Cargando…
Constitutive relations and Schroedinger's formulation of nonlinear electromagnetic theories
We present a systematic study of nonlinear and higher derivatives extensions of electromagnetism. We clarify when action functionals S[F] can be explicitly obtained from arbitrary (not necessarily self-dual) nonlinear equations of motion. We show that the "Deformed twisted self-duality conditio...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP05(2013)087 http://cds.cern.ch/record/1517765 |
Sumario: | We present a systematic study of nonlinear and higher derivatives extensions of electromagnetism. We clarify when action functionals S[F] can be explicitly obtained from arbitrary (not necessarily self-dual) nonlinear equations of motion. We show that the "Deformed twisted self-duality condition" proposal originated in the context of supergravity counterterms is actually the general framework needed to discuss self-dual theories starting from a variational principle. We generalize to nonlinear and higher derivatives theories Schroedinger formulation of Born-Infeld theory, and for the latter, and more in general for nonlinear theories, we derive a closed form expression of the corresponding deformed twisted self-duality conditions. This implies that the hypergeometric expression entering these duality conditions and leading to Born-Infeld theory satisfies a hidden quartic equation. |
---|