Cargando…
Radial basis function (RBF) neural network control for mechanical systems: design, analysis and Matlab simulation
Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design metho...
Autor principal: | Liu, Jinkun |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-34816-7 http://cds.cern.ch/record/1518685 |
Ejemplares similares
-
Optimization and Simulation of Enterprise Management Resource Scheduling Based on the Radial Basis Function (RBF) Neural Network
por: Wu, Ye, et al.
Publicado: (2021) -
Retracted: Optimization and Simulation of Enterprise Management Resource Scheduling Based on the Radial Basis Function (RBF) Neural Network
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
MATLAB Simulations for Radar Systems Design
por: Mahafza, Bassem R, et al.
Publicado: (2003) -
Surface Roughness Prediction of Titanium Alloy during Abrasive Belt Grinding Based on an Improved Radial Basis Function (RBF) Neural Network
por: Shan, Kun, et al.
Publicado: (2023) -
Linear control system analysis and design with MATLAB
por: Houpis, Constantine H, et al.
Publicado: (2014)