Cargando…
Elementary continuum mechanics for everyone: with applications to structural mechanics
The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and lineari...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-94-007-5766-0 http://cds.cern.ch/record/1522363 |
Sumario: | The book opens with a derivation of kinematically nonlinear 3-D continuum mechanics for solids. Then the principle of virtual work is utilized to derive the simpler, kinematically linear 3-D theory and to provide the foundation for developing consistent theories of kinematic nonlinearity and linearity for specialized continua, such as beams and plates, and finite element methods for these structures. A formulation in terms of the versatile Budiansky-Hutchinson notation is used as basis for the theories for these structures and structural elements, as well as for an in-depth treatment of structural instability. |
---|