Cargando…

Physics at CERN's Antiproton Decelerator

The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesize...

Descripción completa

Detalles Bibliográficos
Autores principales: Hori, M., Walz, J.
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.ppnp.2013.02.004
http://cds.cern.ch/record/1542127
_version_ 1780929947751153664
author Hori, M.
Walz, J.
author_facet Hori, M.
Walz, J.
author_sort Hori, M.
collection CERN
description The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\bar{p}$) confined in magnetic Penning traps. Cold $\bar{\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\bar{p}$. Ground-state $\bar{\rm H}$ was later trapped for up to $\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\bar{p}{\rm He}^+$ atom, UV transitions were measured to a precision of (2.3-5) $\times$ $10^{-9}$ by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as $M_{\bar{p}}/m_e=$1836.1526736(23), which agrees with the p value. Microwave spectroscopy of $\bar{p}{\rm He}^+$ yielded a measurement of the $\bar{p}$ magnetic moment with a precision of 0.3%. More recently the magnetic moment of a single $\bar{p}$ confined in a Penning trap was measured with a higher precision, as $\mu_{\bar{p}}=-2.792845(12)$$\mu_{\rm nucl}$ in nuclear magnetons. Other measurements include the energy loss of 1-100 keV $\bar{p}$ traversing conductor and insulator targets; the cross sections of <10 keV $\bar{p}$ ionizing gas targets; and the cross sections of 5-MeV $\bar{p}$ annihilating on target foils via nuclear collisions. The biological effectiveness of $\bar{p}$ beams destroying cancer cells was measured as a possible method for radiological therapy. New experiments under preparation attempt to measure the gravitational acceleration of $\bar{\rm H}$ or synthesize $\bar{\rm H}^+$.
id cern-1542127
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
record_format invenio
spelling cern-15421272021-05-03T20:08:51Zdoi:10.1016/j.ppnp.2013.02.004http://cds.cern.ch/record/1542127engHori, M.Walz, J.Physics at CERN's Antiproton DeceleratorOther Fields of PhysicsThe Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\bar{p}$) confined in magnetic Penning traps. Cold $\bar{\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\bar{p}$. Ground-state $\bar{\rm H}$ was later trapped for up to $\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\bar{p}{\rm He}^+$ atom, UV transitions were measured to a precision of (2.3-5) $\times$ $10^{-9}$ by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as $M_{\bar{p}}/m_e=$1836.1526736(23), which agrees with the p value. Microwave spectroscopy of $\bar{p}{\rm He}^+$ yielded a measurement of the $\bar{p}$ magnetic moment with a precision of 0.3%. More recently the magnetic moment of a single $\bar{p}$ confined in a Penning trap was measured with a higher precision, as $\mu_{\bar{p}}=-2.792845(12)$$\mu_{\rm nucl}$ in nuclear magnetons. Other measurements include the energy loss of 1-100 keV $\bar{p}$ traversing conductor and insulator targets; the cross sections of <10 keV $\bar{p}$ ionizing gas targets; and the cross sections of 5-MeV $\bar{p}$ annihilating on target foils via nuclear collisions. The biological effectiveness of $\bar{p}$ beams destroying cancer cells was measured as a possible method for radiological therapy. New experiments under preparation attempt to measure the gravitational acceleration of $\bar{\rm H}$ or synthesize $\bar{\rm H}^+$.The Antiproton Decelerator of CERN began operation in 1999 to serve experiments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen ($\bar{\rm H}$) and antiprotonic helium ($\bar{p}{\rm He}^+$). The first 12 years of operation saw cold $\bar{\rm H}$ synthesized by overlapping clouds of positrons ($e^+$) and antiprotons ($\bar{p}$) confined in magnetic Penning traps. Cold $\bar{\rm H}$ was also produced in collisions between Rydberg positronium atoms and $\bar{p}$. Ground-state $\bar{\rm H}$ was later trapped for up to $\sim 1000$ s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the $\bar{p}{\rm He}^+$ atom, UV transitions were measured to a precision of (2.3-5) $\times$ $10^{-9}$ by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as $M_{\bar{p}}/m_e=$1836.1526736(23), which agrees with the p value. Microwave spectroscopy of $\bar{p}{\rm He}^+$ yielded a measurement of the $\bar{p}$ magnetic moment with a precision of 0.3%. More recently the magnetic moment of a single $\bar{p}$ confined in a Penning trap was measured with a higher precision, as $\mu_{\bar{p}}=-2.792845(12)$$\mu_{\rm nucl}$ in nuclear magnetons. Other measurements include the energy loss of 1-100 keV $\bar{p}$ traversing conductor and insulator targets; the cross sections of <10 keV $\bar{p}$ ionizing gas targets; and the cross sections of 5-MeV $\bar{p}$ annihilating on target foils via nuclear collisions. The biological effectiveness of $\bar{p}$ beams destroying cancer cells was measured as a possible method for radiological therapy. New experiments under preparation attempt to measure the gravitational acceleration of $\bar{\rm H}$ or synthesize $\obar{\rm H}^+$.arXiv:1304.3721oai:cds.cern.ch:15421272013-04-16
spellingShingle Other Fields of Physics
Hori, M.
Walz, J.
Physics at CERN's Antiproton Decelerator
title Physics at CERN's Antiproton Decelerator
title_full Physics at CERN's Antiproton Decelerator
title_fullStr Physics at CERN's Antiproton Decelerator
title_full_unstemmed Physics at CERN's Antiproton Decelerator
title_short Physics at CERN's Antiproton Decelerator
title_sort physics at cern's antiproton decelerator
topic Other Fields of Physics
url https://dx.doi.org/10.1016/j.ppnp.2013.02.004
http://cds.cern.ch/record/1542127
work_keys_str_mv AT horim physicsatcernsantiprotondecelerator
AT walzj physicsatcernsantiprotondecelerator