Cargando…

Heavy quark energy loss far from equilibrium in a strongly coupled collision

We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium e...

Descripción completa

Detalles Bibliográficos
Autores principales: Chesler, Paul M, Lekaveckas, Mindaugas, Rajagopal, Krishna
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1007/JHEP10(2013)013
http://cds.cern.ch/record/1553389
_version_ 1780930345508536320
author Chesler, Paul M
Lekaveckas, Mindaugas
Rajagopal, Krishna
author_facet Chesler, Paul M
Lekaveckas, Mindaugas
Rajagopal, Krishna
author_sort Chesler, Paul M
collection CERN
description We compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodynamic fluid result in qualitative consequences for the 'drag' force acting on the quark. In certain circumstances, the force required to drag the quark through the plasma can point opposite to the velocity of the quark, meaning that the force that the plasma exerts on a quark moving through it acts in the same direction as its velocity. And, generically, the force includes a component perpendicular to the direction of motion of the quark. Our results support a straightforward approach to modeling the drag on, and energy loss of, heavy quarks with modest rapidity in heavy ion collisions, both before and after the quark-gluon plasma hydrodynamizes, and provide cautionary lessons at higher rapidity.
id cern-1553389
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
record_format invenio
spelling cern-15533892019-09-30T06:29:59Zdoi:10.1007/JHEP10(2013)013http://cds.cern.ch/record/1553389engChesler, Paul MLekaveckas, MindaugasRajagopal, KrishnaHeavy quark energy loss far from equilibrium in a strongly coupled collisionParticle Physics - PhenomenologyWe compute and study the drag force acting on a heavy quark propagating through the matter produced in the collision of two sheets of energy in a strongly coupled gauge theory that can be analyzed holographically. Although this matter is initially far from equilibrium, we find that the equilibrium expression for heavy quark energy loss in a homogeneous strongly coupled plasma with the same instantaneous energy density or pressure as that at the location of the quark describes many qualitative features of our results. One interesting exception is that there is a time delay after the initial collision before the heavy quark energy loss becomes significant. At later times, once a liquid plasma described by viscous hydrodynamics has formed, expressions based upon assuming instantaneous homogeneity and equilibrium provide a semi-quantitative description of our results - as long as the rapidity of the heavy quark is not too large. For a heavy quark with large rapidity, the gradients in the velocity of the hydrodynamic fluid result in qualitative consequences for the 'drag' force acting on the quark. In certain circumstances, the force required to drag the quark through the plasma can point opposite to the velocity of the quark, meaning that the force that the plasma exerts on a quark moving through it acts in the same direction as its velocity. And, generically, the force includes a component perpendicular to the direction of motion of the quark. Our results support a straightforward approach to modeling the drag on, and energy loss of, heavy quarks with modest rapidity in heavy ion collisions, both before and after the quark-gluon plasma hydrodynamizes, and provide cautionary lessons at higher rapidity.arXiv:1306.0564CERN-PH-TH-2013-109oai:cds.cern.ch:15533892013-06-03
spellingShingle Particle Physics - Phenomenology
Chesler, Paul M
Lekaveckas, Mindaugas
Rajagopal, Krishna
Heavy quark energy loss far from equilibrium in a strongly coupled collision
title Heavy quark energy loss far from equilibrium in a strongly coupled collision
title_full Heavy quark energy loss far from equilibrium in a strongly coupled collision
title_fullStr Heavy quark energy loss far from equilibrium in a strongly coupled collision
title_full_unstemmed Heavy quark energy loss far from equilibrium in a strongly coupled collision
title_short Heavy quark energy loss far from equilibrium in a strongly coupled collision
title_sort heavy quark energy loss far from equilibrium in a strongly coupled collision
topic Particle Physics - Phenomenology
url https://dx.doi.org/10.1007/JHEP10(2013)013
http://cds.cern.ch/record/1553389
work_keys_str_mv AT cheslerpaulm heavyquarkenergylossfarfromequilibriuminastronglycoupledcollision
AT lekaveckasmindaugas heavyquarkenergylossfarfromequilibriuminastronglycoupledcollision
AT rajagopalkrishna heavyquarkenergylossfarfromequilibriuminastronglycoupledcollision