Cargando…
Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-00128-9 http://cds.cern.ch/record/1555669 |
_version_ | 1780930463308709888 |
---|---|
author | Bismut, Jean-Michel |
author_facet | Bismut, Jean-Michel |
author_sort | Bismut, Jean-Michel |
collection | CERN |
id | cern-1555669 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
publisher | Springer |
record_format | invenio |
spelling | cern-15556692021-04-21T22:36:55Zdoi:10.1007/978-3-319-00128-9http://cds.cern.ch/record/1555669engBismut, Jean-MichelHypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometryMathematical Physics and MathematicsSpringeroai:cds.cern.ch:15556692013 |
spellingShingle | Mathematical Physics and Mathematics Bismut, Jean-Michel Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title | Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title_full | Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title_fullStr | Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title_full_unstemmed | Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title_short | Hypoelliptic Laplacian and Bott–Chern cohomology: a theorem of Riemann–Roch–Grothendieck in complex geometry |
title_sort | hypoelliptic laplacian and bott–chern cohomology: a theorem of riemann–roch–grothendieck in complex geometry |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/978-3-319-00128-9 http://cds.cern.ch/record/1555669 |
work_keys_str_mv | AT bismutjeanmichel hypoellipticlaplacianandbottcherncohomologyatheoremofriemannrochgrothendieckincomplexgeometry |