Cargando…
Froissart Bound on Total Cross-section without Unknown Constants
We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for $\pi\pi$ scattering. E.g. for $\pi^0 \pi^0$ scattering we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{tot}(s,\infty)\equiv s\int_...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.89.045015 http://cds.cern.ch/record/1557289 |
Sumario: | We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for $\pi\pi$ scattering. E.g. for $\pi^0 \pi^0$ scattering we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{tot}(s,\infty)\equiv s\int_{s} ^{\infty} ds'\sigma_{tot}(s')/s'^2 \leq \pi (m_{\pi})^{-2} [\ln (s/s_0)+(1/2)\ln \ln (s/s_0) +1]^2$ where $m_\pi^2/s_0= 17\pi \sqrt{\pi/2} $ . |
---|