Cargando…

Froissart Bound on Total Cross-section without Unknown Constants

We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for $\pi\pi$ scattering. E.g. for $\pi^0 \pi^0$ scattering we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{tot}(s,\infty)\equiv s\int_...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, André, Roy, S.M.
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1103/PhysRevD.89.045015
http://cds.cern.ch/record/1557289
Descripción
Sumario:We determine the scale of the logarithm in the Froissart bound on total cross-sections using absolute bounds on the D-wave below threshold for $\pi\pi$ scattering. E.g. for $\pi^0 \pi^0$ scattering we show that for c.m. energy $\sqrt{s}\rightarrow \infty $, $\bar{\sigma}_{tot}(s,\infty)\equiv s\int_{s} ^{\infty} ds'\sigma_{tot}(s')/s'^2 \leq \pi (m_{\pi})^{-2} [\ln (s/s_0)+(1/2)\ln \ln (s/s_0) +1]^2$ where $m_\pi^2/s_0= 17\pi \sqrt{\pi/2} $ .