Cargando…

Planck and the local Universe: quantifying the tension

We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints fro...

Descripción completa

Detalles Bibliográficos
Autores principales: Verde, Licia, Protopapas, Pavlos, Jimenez, Raul
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1016/j.dark.2013.09.002
http://cds.cern.ch/record/1558778
Descripción
Sumario:We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffrey's scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in "strong" tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension "highly significant" (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.