Cargando…

Renormalization of Massless Feynman Amplitudes in Configuration Space

A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Nikolov, Nikolay M, Stora, Raymond, Todorov, Ivan
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.1142/S0129055X14300027
http://cds.cern.ch/record/1564780
_version_ 1780930863166390272
author Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
author_facet Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
author_sort Nikolov, Nikolay M
collection CERN
description A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.
id cern-1564780
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2013
record_format invenio
spelling cern-15647802019-09-30T06:29:59Zdoi:10.1142/S0129055X14300027http://cds.cern.ch/record/1564780engNikolov, Nikolay MStora, RaymondTodorov, IvanRenormalization of Massless Feynman Amplitudes in Configuration SpaceParticle Physics - TheoryA systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.arXiv:1307.6854CERN-PH-TH-2013-107oai:cds.cern.ch:15647802013-07-25
spellingShingle Particle Physics - Theory
Nikolov, Nikolay M
Stora, Raymond
Todorov, Ivan
Renormalization of Massless Feynman Amplitudes in Configuration Space
title Renormalization of Massless Feynman Amplitudes in Configuration Space
title_full Renormalization of Massless Feynman Amplitudes in Configuration Space
title_fullStr Renormalization of Massless Feynman Amplitudes in Configuration Space
title_full_unstemmed Renormalization of Massless Feynman Amplitudes in Configuration Space
title_short Renormalization of Massless Feynman Amplitudes in Configuration Space
title_sort renormalization of massless feynman amplitudes in configuration space
topic Particle Physics - Theory
url https://dx.doi.org/10.1142/S0129055X14300027
http://cds.cern.ch/record/1564780
work_keys_str_mv AT nikolovnikolaym renormalizationofmasslessfeynmanamplitudesinconfigurationspace
AT storaraymond renormalizationofmasslessfeynmanamplitudesinconfigurationspace
AT todorovivan renormalizationofmasslessfeynmanamplitudesinconfigurationspace