Cargando…
Renormalization of Massless Feynman Amplitudes in Configuration Space
A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A ho...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0129055X14300027 http://cds.cern.ch/record/1564780 |
_version_ | 1780930863166390272 |
---|---|
author | Nikolov, Nikolay M Stora, Raymond Todorov, Ivan |
author_facet | Nikolov, Nikolay M Stora, Raymond Todorov, Ivan |
author_sort | Nikolov, Nikolay M |
collection | CERN |
description | A systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences. |
id | cern-1564780 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
record_format | invenio |
spelling | cern-15647802019-09-30T06:29:59Zdoi:10.1142/S0129055X14300027http://cds.cern.ch/record/1564780engNikolov, Nikolay MStora, RaymondTodorov, IvanRenormalization of Massless Feynman Amplitudes in Configuration SpaceParticle Physics - TheoryA systematic study of recursive renormalization of Feynman amplitudes is carried out both in Euclidean and in Minkowski configuration space. For a massless quantum field theory (QFT) we use the technique of extending associate homogeneous distributions to complete the renormalization recursion. A homogeneous (Poincare covariant) amplitude is said to be convergent if it admits a (unique covariant) extension as a homogeneous distribution. For any amplitude without subdivergences - i.e. for a Feynman distribution that is homogeneous off the full (small) diagonal - we define a renormalization invariant residue. Its vanishing is a necessary and sufficient condition for the convergence of such an amplitude. It extends to arbitrary - not necessarily primitively divergent - Feynman amplitudes. This notion of convergence is finer than the usual power counting criterion and includes cancellation of divergences.arXiv:1307.6854CERN-PH-TH-2013-107oai:cds.cern.ch:15647802013-07-25 |
spellingShingle | Particle Physics - Theory Nikolov, Nikolay M Stora, Raymond Todorov, Ivan Renormalization of Massless Feynman Amplitudes in Configuration Space |
title | Renormalization of Massless Feynman Amplitudes in Configuration Space |
title_full | Renormalization of Massless Feynman Amplitudes in Configuration Space |
title_fullStr | Renormalization of Massless Feynman Amplitudes in Configuration Space |
title_full_unstemmed | Renormalization of Massless Feynman Amplitudes in Configuration Space |
title_short | Renormalization of Massless Feynman Amplitudes in Configuration Space |
title_sort | renormalization of massless feynman amplitudes in configuration space |
topic | Particle Physics - Theory |
url | https://dx.doi.org/10.1142/S0129055X14300027 http://cds.cern.ch/record/1564780 |
work_keys_str_mv | AT nikolovnikolaym renormalizationofmasslessfeynmanamplitudesinconfigurationspace AT storaraymond renormalizationofmasslessfeynmanamplitudesinconfigurationspace AT todorovivan renormalizationofmasslessfeynmanamplitudesinconfigurationspace |