Cargando…
Hexagon functions and the three-loop remainder function
We present the three-loop remainder function, which describes the scattering of six gluons in the maximally-helicity-violating configuration in planar N=4 super-Yang-Mills theory, as a function of the three dual conformal cross ratios. The result can be expressed in terms of multiple Goncharov polyl...
Autores principales: | Dixon, Lance J., Drummond, James M., von Hippel, Matt, Pennington, Jeffrey |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP12(2013)049 http://cds.cern.ch/record/1572914 |
Ejemplares similares
-
The four-loop remainder function and multi-Regge behavior at NNLLA in planar N=4 super-Yang-Mills theory
por: Dixon, Lance J., et al.
Publicado: (2014) -
Bootstrapping the three-loop hexagon
por: Dixon, Lance J., et al.
Publicado: (2011) -
The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM
por: Dixon, Lance J., et al.
Publicado: (2011) -
The one-loop six-dimensional hexagon integral with three massive corners
por: Del Duca, Vittorio, et al.
Publicado: (2011) -
All two-loop MHV remainder functions in multi-Regge kinematics
por: Del Duca, Vittorio, et al.
Publicado: (2018)