Cargando…
ECLOUD12 sheds light on electron clouds
Electron clouds – abundantly generated in accelerator vacuum chambers by residual-gas ionization, photoemission and secondary emission – can affect the operation and performance of hadron and lepton accelerators in a variety of ways. They can induce increases in vacuum pressure, beam instabilities,...
Autores principales: | , |
---|---|
Formato: | info:eu-repo/semantics/article |
Lenguaje: | eng |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1597023 |
Sumario: | Electron clouds – abundantly generated in accelerator vacuum chambers by residual-gas ionization, photoemission and secondary emission – can affect the operation and performance of hadron and lepton accelerators in a variety of ways. They can induce increases in vacuum pressure, beam instabilities, beam losses, emittance growth, reductions in the beam lifetime or additional heat loads on a (cold) chamber wall. They have recently regained some prominence: since autumn 2010, all of these effects have been observed during beam commissioning of the LHC. ECLOUD12 was organized jointly and co-sponsored by INFN-Frascati, INFN-Pisa, CERN, EuCARD-AccNet and the Low Emittance Ring (LER) study at CERN. |
---|