Cargando…

Finite-dimensional division algebras over fields

Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that...

Descripción completa

Detalles Bibliográficos
Autor principal: Jacobson, Nathan
Lenguaje:eng
Publicado: Springer 2009
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-642-02429-0
http://cds.cern.ch/record/1601575
_version_ 1780931477253390336
author Jacobson, Nathan
author_facet Jacobson, Nathan
author_sort Jacobson, Nathan
collection CERN
description Finite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of parti
id cern-1601575
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2009
publisher Springer
record_format invenio
spelling cern-16015752021-04-21T22:25:38Zdoi:10.1007/978-3-642-02429-0http://cds.cern.ch/record/1601575engJacobson, NathanFinite-dimensional division algebras over fieldsMathematical Physics and MathematicsFinite-Dimensional Division Algebras over fields determine, by the Wedderburn Theorem, the semi-simple finite-dimensional algebras over a field. They lead to the definition of the Brauer group and to certain geometric objects, the Brauer-Severi varieties. The book concentrates on those algebras that have an involution. Algebras with involution appear in many contexts; they arose first in the study of the so-called 'multiplication algebras of Riemann matrices'. The largest part of the book is the fifth chapter, dealing with involutorial simple algebras of finite dimension over a field. Of partiSpringeroai:cds.cern.ch:16015752009
spellingShingle Mathematical Physics and Mathematics
Jacobson, Nathan
Finite-dimensional division algebras over fields
title Finite-dimensional division algebras over fields
title_full Finite-dimensional division algebras over fields
title_fullStr Finite-dimensional division algebras over fields
title_full_unstemmed Finite-dimensional division algebras over fields
title_short Finite-dimensional division algebras over fields
title_sort finite-dimensional division algebras over fields
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/978-3-642-02429-0
http://cds.cern.ch/record/1601575
work_keys_str_mv AT jacobsonnathan finitedimensionaldivisionalgebrasoverfields