Cargando…

Field arithmetic

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar mea...

Descripción completa

Detalles Bibliográficos
Autor principal: Fried, Michael D
Lenguaje:eng
Publicado: Springer 2006
Materias:
Acceso en línea:https://dx.doi.org/10.1007/b138352
http://cds.cern.ch/record/1607506
_version_ 1780931719882342400
author Fried, Michael D
author_facet Fried, Michael D
author_sort Fried, Michael D
collection CERN
description Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements.Progress from the fi
id cern-1607506
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2006
publisher Springer
record_format invenio
spelling cern-16075062021-04-21T22:23:42Zdoi:10.1007/b138352http://cds.cern.ch/record/1607506engFried, Michael DField arithmeticMathematical Physics and MathematicsField Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements.Progress from the fiSpringeroai:cds.cern.ch:16075062006
spellingShingle Mathematical Physics and Mathematics
Fried, Michael D
Field arithmetic
title Field arithmetic
title_full Field arithmetic
title_fullStr Field arithmetic
title_full_unstemmed Field arithmetic
title_short Field arithmetic
title_sort field arithmetic
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/b138352
http://cds.cern.ch/record/1607506
work_keys_str_mv AT friedmichaeld fieldarithmetic