Cargando…
Causality Constraints on Hadron Production In High Energy Collisions
For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, bar...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1142/S0218301314500190 http://cds.cern.ch/record/1620388 |
Sumario: | For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e^+e^-). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium. |
---|