Cargando…
Courbes algébriques planes
Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan...
Autor principal: | |
---|---|
Lenguaje: | fre |
Publicado: |
Springer
2007
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-540-33708-9 http://cds.cern.ch/record/1621219 |
Sumario: | Issu d'un cours de maîtrise de l'Université Paris VII, ce texte est réédité tel qu'il était paru en 1978. A propos du théorème de Bézout sont introduits divers outils nécessaires au développement de la notion de multiplicité d'intersection de deux courbes algébriques dans le plan projectif complexe. Partant des notions élémentaires sur les sous-ensembles algébriques affines et projectifs, on définit les multiplicités d'intersection et interprète leur somme entermes du résultant de deux polynômes. L'étude locale est prétexte à l'introduction des anneaux de série formelles ou convergentes ; elle |
---|