Cargando…
FPGA-based 10-Gbit Ethernet Data Acquisition Interface for the Upgraded Electronics of the ATLAS Liquid Argon Calorimeters
A stepwise upgrade of the LHC is foreseen starting now until the year 2023 to increase the instantaneous luminosity up to the fivefold of its design value. It implies a challenge for the ATLAS experiment coping with the expected event pile-up, especially for the Level-1 calorimeter trigger system. I...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1088/1742-6596/513/1/012010 http://cds.cern.ch/record/1623136 |
Sumario: | A stepwise upgrade of the LHC is foreseen starting now until the year 2023 to increase the instantaneous luminosity up to the fivefold of its design value. It implies a challenge for the ATLAS experiment coping with the expected event pile-up, especially for the Level-1 calorimeter trigger system. In order to keep the trigger rates within the limited bandwidth new algorithms have to be applied which in turn requires an upgrade of the ATLAS Liquid Argon calorimeter trigger readout electronics. Towards this upgrade, the ATLAS Liquid Argon calorimeter group develops a high-speed data acquisition interface in ATCA standard using commercial hardware instead of complex and expensive in-house developments where possible. This paper gives an overview of the general concepts of the DAQ interface, the engaged technologies and the current status of the development efforts for an FPGA based fast data link with a standard 10 Gbps Ethernet protocol which may also be useful for DAQ systems of other high energy physics experiments. |
---|