Cargando…
Scintillation Detectors for Charged Particles and Photons
Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volu...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-642-03606-4_3 http://cds.cern.ch/record/1624557 |
Sumario: | Scintillation Detectors for Charged Particles and Photons in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.1 Scintillation Detectors for Charged Particles and Photons' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.1 Scintillation Detectors for Charged Particles and Photons 3.1.1.1 Basic detector principles and scintillator requirements 3.1.1.1.1 Interaction of ionizing radiation with scintillator material 3.1.1.1.2 Important scintillator properties 3.1.1.1.2.1 Physico-chemical properties 3.1.1.1.2.2 Optical properties 3.1.1.1.2.3 Radiation hardness 3.1.1.1.3 Scintillator requirements for various applications 3.1.1.1.3.1 High- and medium-energy physics particle detectors 3.1.1.1.3.2 Astrophysics and space 3.1.1.1.3.3 Spectrometry of low energy γ-quanta 3.1.1.1.3.4 Medical imaging 3.1.1.1.3.5 Safety Systems and Homeland Security 3.1.1.1.4 Organic material, glass and condensed gases 3.1.1.2 Scintillation and quenching mechanisms in inorganic scintillators 3.1.1.2.1 The 5 steps in scintillation process 3.1.1.2.2 Scintillation efficiency 3.1.1.2.3 Response linearity and energy resolution 3.1.1.3 Role of defects on scintillation properties and on radiation damage in inorganic scintillators 3.1.1.3.1 Structural defects in a crystal 3.1.1.3.1.1 Point size defects 3.1.1.3.1.2 Impurities 3.1.1.3.2 Impact of defects on optical properties 3.1.1.3.2.1 Charge carrier traps 3.1.1.3.2.2 Defect associated absorption bands 3.1.1.3.3 Radiation damage 3.1.1.4 Crystal engineering. Impact of new technologies 3.1.1.5 Table of commonly used scintillators |
---|