Cargando…

Euclidean Dynamical Triangulation revisited: is the phase transition really first order?

The transition between the two phases of 4D Euclidean Dynamical Triangulation [1] was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems [3,4]. However, one may wonder if this finding was affected by the numerical methods used: to control...

Descripción completa

Detalles Bibliográficos
Autores principales: Rindlisbacher, Tobias, de Forcrand, Philippe
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:https://dx.doi.org/10.22323/1.187.0096
http://cds.cern.ch/record/1629950
Descripción
Sumario:The transition between the two phases of 4D Euclidean Dynamical Triangulation [1] was long believed to be of second order until in 1996 first order behavior was found for sufficiently large systems [3,4]. However, one may wonder if this finding was affected by the numerical methods used: to control volume fluctuations, in both studies [3,4] an artificial harmonic potential was added to the action; in [4] measurements were taken after a fixed number of accepted instead of attempted moves which introduces an additional error. Finally the simulations suffer from strong critical slowing down which may have been underestimated. In the present work, we address the above weaknesses: we allow the volume to fluctuate freely within a fixed interval; we take measurements after a fixed number of attempted moves; and we overcome critical slowing down by using an optimized parallel tempering algorithm [6]. With these improved methods, on systems of size up to 64k 4-simplices, we confirm that the phase transition is first order.