Cargando…
The role of leading twist operators in the Regge and Lorentzian OPE limits
We study two kinematical limits, the Regge limit and the Lorentzian OPE limit, of the four-point function of the stress-tensor multiplet in Super Yang-Mills at weak coupling. We explain how both kinematical limits are controlled by the leading twist operators. We use the known expression of the four...
Autores principales: | , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP04(2014)094 http://cds.cern.ch/record/1630338 |
Sumario: | We study two kinematical limits, the Regge limit and the Lorentzian OPE limit, of the four-point function of the stress-tensor multiplet in Super Yang-Mills at weak coupling. We explain how both kinematical limits are controlled by the leading twist operators. We use the known expression of the four-point function up to three loops, to extract the pomeron residue at next-to-leading order. Using this data and the known form of pomeron spin up to next-to-leading order, we predict the behaviour of the four-point function in the Regge limit at higher loops. Specifically, we determine the leading log behaviour at any loop order and the next-to-leading log at four loops. Finally, we check the consistency of our results with conformal Regge theory. This leads us to predict the behaviour around $J=1$ of the OPE coefficient of the spin $J$ leading twist operator in the OPE of two chiral primary operators. |
---|