Cargando…

The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras

The noncritical D=4 W_3 string is a model of W_3 gravity coupled to two free scalar fields. In this paper we discuss its BRST quantization in direct analogy with that of the D=2 (Virasoro) string. In particular, we calculate the physical spectrum as a problem in BRST cohomology. The corresponding op...

Descripción completa

Detalles Bibliográficos
Autores principales: Bouwknegt, Peter, McCarthy, Jim, Pilch, Krzysztof
Lenguaje:eng
Publicado: Springer 1996
Materias:
Acceso en línea:https://dx.doi.org/10.1007/978-3-540-68719-1
http://cds.cern.ch/record/1631383
_version_ 1780934264805654528
author Bouwknegt, Peter
McCarthy, Jim
Pilch, Krzysztof
author_facet Bouwknegt, Peter
McCarthy, Jim
Pilch, Krzysztof
author_sort Bouwknegt, Peter
collection CERN
description The noncritical D=4 W_3 string is a model of W_3 gravity coupled to two free scalar fields. In this paper we discuss its BRST quantization in direct analogy with that of the D=2 (Virasoro) string. In particular, we calculate the physical spectrum as a problem in BRST cohomology. The corresponding operator cohomology forms a BV-algebra. We model this BV-algebra on that of the polyderivations of a commutative ring on six variables with a quadratic constraint, or equivalently, on the BV-algebra of (polynomial) polyvector fields on the base affine space of SL(3,C). In this paper we attempt to present a complete summary of the progress made in these studies. [...]
id cern-1631383
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1996
publisher Springer
record_format invenio
spelling cern-16313832021-04-21T21:32:31Zdoi:10.1007/978-3-540-68719-1http://cds.cern.ch/record/1631383engBouwknegt, PeterMcCarthy, JimPilch, KrzysztofThe $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebrasGeneral Theoretical PhysicsParticle Physics - TheoryThe noncritical D=4 W_3 string is a model of W_3 gravity coupled to two free scalar fields. In this paper we discuss its BRST quantization in direct analogy with that of the D=2 (Virasoro) string. In particular, we calculate the physical spectrum as a problem in BRST cohomology. The corresponding operator cohomology forms a BV-algebra. We model this BV-algebra on that of the polyderivations of a commutative ring on six variables with a quadratic constraint, or equivalently, on the BV-algebra of (polynomial) polyvector fields on the base affine space of SL(3,C). In this paper we attempt to present a complete summary of the progress made in these studies. [...]Springerhep-th/9509119ADP-95-46-M-38USC-95-18oai:cds.cern.ch:16313831996
spellingShingle General Theoretical Physics
Particle Physics - Theory
Bouwknegt, Peter
McCarthy, Jim
Pilch, Krzysztof
The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title_full The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title_fullStr The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title_full_unstemmed The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title_short The $W_{3}$ algebra: modules, semi-infinite cohomology and BV algebras
title_sort $w_{3}$ algebra: modules, semi-infinite cohomology and bv algebras
topic General Theoretical Physics
Particle Physics - Theory
url https://dx.doi.org/10.1007/978-3-540-68719-1
http://cds.cern.ch/record/1631383
work_keys_str_mv AT bouwknegtpeter thew3algebramodulessemiinfinitecohomologyandbvalgebras
AT mccarthyjim thew3algebramodulessemiinfinitecohomologyandbvalgebras
AT pilchkrzysztof thew3algebramodulessemiinfinitecohomologyandbvalgebras
AT bouwknegtpeter w3algebramodulessemiinfinitecohomologyandbvalgebras
AT mccarthyjim w3algebramodulessemiinfinitecohomologyandbvalgebras
AT pilchkrzysztof w3algebramodulessemiinfinitecohomologyandbvalgebras