Cargando…
Richly parameterized linear models: additive, time series, and spatial models using random effects
A First Step toward a Unified Theory of Richly Parameterized Linear ModelsUsing mixed linear models to analyze data often leads to results that are mysterious, inconvenient, or wrong. Further compounding the problem, statisticians lack a cohesive resource to acquire a systematic, theory-based unders...
Autor principal: | Hodges, James S |
---|---|
Lenguaje: | eng |
Publicado: |
Taylor and Francis
2013
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1633686 |
Ejemplares similares
-
Linear models for multivariate, time series, and spatial data
por: Christensen, Ronald
Publicado: (1991) -
Threshold models in non-linear time series analysis
por: Tong, Howell
Publicado: (1983) -
Linear models and time-series analysis: regression, anova, arma and garch
por: Paolella, Marc S
Publicado: (2018) -
Gaussian and non-Gaussian linear time series and random fields
por: Rosenblatt, Murray
Publicado: (2000) -
Bi-Lipschitz Parameterization of Surfaces
por: Bonk, M, et al.
Publicado: (2002)