Cargando…

Design Guidelines for Ferrite Absorbers Submitted to RF-induced Heating

The use of ferrite absorbers is one of the most effective means of damping potentially harmful high order RF modes, which may lead to beam instabilities and excessive power losses in accelerator devices. However, the power deposited on ferrite absorbers themselves maylead to ferrite exceeding its Cu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bertarelli, A, Garlasche, M
Lenguaje:eng
Publicado: 2013
Materias:
Acceso en línea:http://cds.cern.ch/record/1635958
Descripción
Sumario:The use of ferrite absorbers is one of the most effective means of damping potentially harmful high order RF modes, which may lead to beam instabilities and excessive power losses in accelerator devices. However, the power deposited on ferrite absorbers themselves maylead to ferrite exceeding its Curie temperature, losing its damping properties. An evaluation of the ferrite capability to dissipate deposited heat is hence of paramount importance for the safe design of particle accelerator devices. In this paper, figures of merit are proposed to assess the maximum specific power allowed on a generic ferrite tile, before it reaches its Curie temperature. Due to its inherent brittleness, sufficient contact pressure between ferrite and its housing, allowing heat transmission by conduction, can hardly be applied. A semi-analytical study is thus performed, assuming that ferrite is evacuating heat solely through radiation. The described method is then exemplified in the case of the BPM-embedded tertiary collimator (TCTP) designed in the framework of the LHC collimation upgrade.