Cargando…
Electroweak and supersymmetry breaking from the Higgs discovery
We will explore the consequences on the electroweak breaking condition, the mass of supersymmetric partners and the scale at which supersymmetry is broken, for arbitrary values of the supersymmetric parameters tan(beta) and the stop mixing X_t, which follow from the Higgs discovery with a mass m_H\s...
Autores principales: | , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1103/PhysRevD.90.015016 http://cds.cern.ch/record/1636063 |
_version_ | 1780934547473432576 |
---|---|
author | Delgado, Antonio Garcia, Mateo Quiros, Mariano |
author_facet | Delgado, Antonio Garcia, Mateo Quiros, Mariano |
author_sort | Delgado, Antonio |
collection | CERN |
description | We will explore the consequences on the electroweak breaking condition, the mass of supersymmetric partners and the scale at which supersymmetry is broken, for arbitrary values of the supersymmetric parameters tan(beta) and the stop mixing X_t, which follow from the Higgs discovery with a mass m_H\simeq 126 GeV at the LHC. Within the present uncertainty on the top quark mass we deduce that radiative breaking requires tan(beta) \gtrsim 7 for maximal mixing X_t\simeq \sqrt{6}, and tan(beta) \gtrsim 20 for small mixing X_t\lesssim 1. The scale at which supersymmetry is broken \mathcal M can be of order the unification or Planck scale only for large values of tan(beta) and negligible mixing X_t\simeq 0. On the other hand for maximal mixing and large values of tan(beta) supersymmetry should break at scales as low as \mathcal M\simeq 10^5 GeV. The uncertainty in those predictions stemming from the uncertainty in the top quark mass, i.e. the top Yukawa coupling, is small (large) for large (small) values of tan(beta). In fact for tan(beta)=1 the uncertainty on the value of \mathcal M is of several orders of magnitude. |
id | cern-1636063 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2013 |
record_format | invenio |
spelling | cern-16360632023-03-14T20:56:28Zdoi:10.1103/PhysRevD.90.015016http://cds.cern.ch/record/1636063engDelgado, AntonioGarcia, MateoQuiros, MarianoElectroweak and supersymmetry breaking from the Higgs discoveryParticle Physics - PhenomenologyWe will explore the consequences on the electroweak breaking condition, the mass of supersymmetric partners and the scale at which supersymmetry is broken, for arbitrary values of the supersymmetric parameters tan(beta) and the stop mixing X_t, which follow from the Higgs discovery with a mass m_H\simeq 126 GeV at the LHC. Within the present uncertainty on the top quark mass we deduce that radiative breaking requires tan(beta) \gtrsim 7 for maximal mixing X_t\simeq \sqrt{6}, and tan(beta) \gtrsim 20 for small mixing X_t\lesssim 1. The scale at which supersymmetry is broken \mathcal M can be of order the unification or Planck scale only for large values of tan(beta) and negligible mixing X_t\simeq 0. On the other hand for maximal mixing and large values of tan(beta) supersymmetry should break at scales as low as \mathcal M\simeq 10^5 GeV. The uncertainty in those predictions stemming from the uncertainty in the top quark mass, i.e. the top Yukawa coupling, is small (large) for large (small) values of tan(beta). In fact for tan(beta)=1 the uncertainty on the value of \mathcal M is of several orders of magnitude.<p>We will explore the consequences on the electroweak breaking condition, the mass of supersymmetric partners and the scale at which supersymmetry breaking is transmitted, for arbitrary values of the supersymmetric parameters <inline-formula><mml:math display="inline"><mml:mrow><mml:mi>tan</mml:mi><mml:mi>β</mml:mi></mml:mrow></mml:math></inline-formula> and the stop mixing <inline-formula><mml:math display="inline"><mml:msub><mml:mi>X</mml:mi><mml:mi>t</mml:mi></mml:msub></mml:math></inline-formula>, which follow from the Higgs discovery with a mass <inline-formula><mml:math display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>m</mml:mi></mml:mrow><mml:mrow><mml:mi>H</mml:mi></mml:mrow></mml:msub><mml:mo>≃</mml:mo><mml:mn>126</mml:mn><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula> at the LHC. Within the present uncertainty on the top quark mass we deduce that radiative breaking requires <inline-formula><mml:math display="inline"><mml:mrow><mml:mi>tan</mml:mi><mml:mi>β</mml:mi><mml:mo>≳</mml:mo><mml:mn>8</mml:mn></mml:mrow></mml:math></inline-formula> for maximal mixing <inline-formula><mml:math display="inline"><mml:msub><mml:mi>X</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>≃</mml:mo><mml:msqrt><mml:mn>6</mml:mn></mml:msqrt></mml:math></inline-formula>, and <inline-formula><mml:math display="inline"><mml:mrow><mml:mi>tan</mml:mi><mml:mi>β</mml:mi><mml:mo>≳</mml:mo><mml:mn>20</mml:mn></mml:mrow></mml:math></inline-formula> for small mixing <inline-formula><mml:math display="inline"><mml:msub><mml:mi>X</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>≲</mml:mo><mml:mn>1.8</mml:mn></mml:math></inline-formula>. The scale at which supersymmetry breaking is transmitted <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">M</mml:mi></mml:math></inline-formula> can be of order the unification or Planck scale only for large values of <inline-formula><mml:math display="inline"><mml:mi>tan</mml:mi><mml:mi>β</mml:mi></mml:math></inline-formula> and negligible mixing <inline-formula><mml:math display="inline"><mml:msub><mml:mi>X</mml:mi><mml:mi>t</mml:mi></mml:msub><mml:mo>≃</mml:mo><mml:mn>0</mml:mn></mml:math></inline-formula>. On the other hand for maximal mixing and large values of <inline-formula><mml:math display="inline"><mml:mi>tan</mml:mi><mml:mi>β</mml:mi></mml:math></inline-formula> supersymmetry should break at scales as low as <inline-formula><mml:math display="inline"><mml:mrow><mml:mi mathvariant="script">M</mml:mi><mml:mo>≃</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msup><mml:mtext> </mml:mtext><mml:mi>GeV</mml:mi></mml:mrow></mml:math></inline-formula>. The uncertainty in those predictions stemming from the uncertainty in the top quark mass, i.e. the top Yukawa coupling, is small (large) for large (small) values of <inline-formula><mml:math display="inline"><mml:mi>tan</mml:mi><mml:mi>β</mml:mi></mml:math></inline-formula>. In fact for <inline-formula><mml:math display="inline"><mml:mi>tan</mml:mi><mml:mi>β</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:math></inline-formula> the uncertainty on the value of <inline-formula><mml:math display="inline"><mml:mi mathvariant="script">M</mml:mi></mml:math></inline-formula> is several orders of magnitude.</p>We will explore the consequences on the electroweak breaking condition, the mass of supersymmetric partners and the scale at which supersymmetry is broken, for arbitrary values of the supersymmetric parameters tan(beta) and the stop mixing X_t, which follow from the Higgs discovery with a mass m_H\simeq 126 GeV at the LHC. Within the present uncertainty on the top quark mass we deduce that radiative breaking requires tan(beta) \gtrsim 7 for maximal mixing X_t\simeq \sqrt{6}, and tan(beta) \gtrsim 20 for small mixing X_t\lesssim 1. The scale at which supersymmetry is broken \mathcal M can be of order the unification or Planck scale only for large values of tan(beta) and negligible mixing X_t\simeq 0. On the other hand for maximal mixing and large values of tan(beta) supersymmetry should break at scales as low as \mathcal M\simeq 10^5 GeV. The uncertainty in those predictions stemming from the uncertainty in the top quark mass, i.e. the top Yukawa coupling, is small (large) for large (small) values of tan(beta). In fact for tan(beta)=1 the uncertainty on the value of \mathcal M is of several orders of magnitude.arXiv:1312.3235CERN-PH-TH-2013-301NSF-KITP-13-258UAB-FT-749CERN-PH-TH-2013-301NSF-KITP-13-258UAB-FT-749oai:cds.cern.ch:16360632013-12-11 |
spellingShingle | Particle Physics - Phenomenology Delgado, Antonio Garcia, Mateo Quiros, Mariano Electroweak and supersymmetry breaking from the Higgs discovery |
title | Electroweak and supersymmetry breaking from the Higgs discovery |
title_full | Electroweak and supersymmetry breaking from the Higgs discovery |
title_fullStr | Electroweak and supersymmetry breaking from the Higgs discovery |
title_full_unstemmed | Electroweak and supersymmetry breaking from the Higgs discovery |
title_short | Electroweak and supersymmetry breaking from the Higgs discovery |
title_sort | electroweak and supersymmetry breaking from the higgs discovery |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1103/PhysRevD.90.015016 http://cds.cern.ch/record/1636063 |
work_keys_str_mv | AT delgadoantonio electroweakandsupersymmetrybreakingfromthehiggsdiscovery AT garciamateo electroweakandsupersymmetrybreakingfromthehiggsdiscovery AT quirosmariano electroweakandsupersymmetrybreakingfromthehiggsdiscovery |