Cargando…
Diffraction Radiation test at CesrTA for Non-Intercepting Micron-scale Beam Size Measurement
Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarises the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitiv...
Autores principales: | , , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | http://cds.cern.ch/record/1638359 |
Sumario: | Diffraction radiation (DR) is produced when a relativistic charged particle moves in the vicinity of a medium. The electric field of the charged particle polarises the target atoms which then oscillate, emitting radiation with a very broad spectrum. The spatial-spectral properties of DR are sensitive to a range of electron beam parameters. Furthermore, the energy loss due to DR is so small that the electron beam parameters are unchanged. DR can therefore be used to develop non-invasive diagnostic tools. To achieve the micron-scale resolution required to measure the transverse (vertical) beam size using incoherent DR in CLIC, DR in UV and X-ray spectral-range must be investigated. Experimental validation of such a scheme is ongoing at CesrTA at Cornell University, USA. Here we report on the test using 0.5 mm and 1 mm target apertures on a 2.1 GeV electron beam and 400 nm wavelength. |
---|