Cargando…
On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation
We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic di...
Autores principales: | , , , , , , |
---|---|
Lenguaje: | eng |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/JHEP08(2014)070 http://cds.cern.ch/record/1641338 |
_version_ | 1780934868963688448 |
---|---|
author | Cho, Won Sang Gainer, James S. Kim, Doojin Matchev, Konstantin T. Moortgat, Filip Pape, Luc Park, Myeonghun |
author_facet | Cho, Won Sang Gainer, James S. Kim, Doojin Matchev, Konstantin T. Moortgat, Filip Pape, Luc Park, Myeonghun |
author_sort | Cho, Won Sang |
collection | CERN |
description | We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual $M_{T2}$ distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain. |
id | cern-1641338 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 2014 |
record_format | invenio |
spelling | cern-16413382022-08-10T20:08:14Zdoi:10.1007/JHEP08(2014)070http://cds.cern.ch/record/1641338engCho, Won SangGainer, James S.Kim, DoojinMatchev, Konstantin T.Moortgat, FilipPape, LucPark, MyeonghunOn-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguationParticle Physics - PhenomenologyWe consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual $M_{T2}$ distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge M$_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual M$_{T2}$ distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge $M_{T2}$ variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual $M_{T2}$ distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.arXiv:1401.1449oai:cds.cern.ch:16413382014-01-07 |
spellingShingle | Particle Physics - Phenomenology Cho, Won Sang Gainer, James S. Kim, Doojin Matchev, Konstantin T. Moortgat, Filip Pape, Luc Park, Myeonghun On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title | On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title_full | On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title_fullStr | On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title_full_unstemmed | On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title_short | On-shell constrained $M_2$ variables with applications to mass measurements and topology disambiguation |
title_sort | on-shell constrained $m_2$ variables with applications to mass measurements and topology disambiguation |
topic | Particle Physics - Phenomenology |
url | https://dx.doi.org/10.1007/JHEP08(2014)070 http://cds.cern.ch/record/1641338 |
work_keys_str_mv | AT chowonsang onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT gainerjamess onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT kimdoojin onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT matchevkonstantint onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT moortgatfilip onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT papeluc onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation AT parkmyeonghun onshellconstrainedm2variableswithapplicationstomassmeasurementsandtopologydisambiguation |