Cargando…
Computationally efficient model predictive control algorithms: a neural network approach
This book thoroughly discusses computationally efficient (suboptimal) Model Predictive Control (MPC) techniques based on neural models. The subjects treated include: · A few types of suboptimal MPC algorithms in which a linear approximation of the model or of the predicted trajectory is succ...
Autor principal: | Ławryńczuk, Maciej |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/978-3-319-04229-9 http://cds.cern.ch/record/1646838 |
Ejemplares similares
-
Long Short-Term Memory Neural Networks for Modeling Dynamical Processes and Predictive Control: A Hybrid Physics-Informed Approach
por: Zarzycki, Krzysztof, et al.
Publicado: (2023) -
Computationally Efficient Nonlinear Model Predictive Control Using the L(1) Cost-Function
por: Ławryńczuk, Maciej, et al.
Publicado: (2021) -
LSTM and GRU Neural Networks as Models of Dynamical Processes Used in Predictive Control: A Comparison of Models Developed for Two Chemical Reactors
por: Zarzycki, Krzysztof, et al.
Publicado: (2021) -
Intelligent control: a hybrid approach based on fuzzy logic, neural networks and genetic algorithms
por: Siddique, Nazmul
Publicado: (2014) -
Fast Real-Time Model Predictive Control for a Ball-on-Plate Process
por: Zarzycki, Krzysztof, et al.
Publicado: (2021)