Cargando…

Nature-inspired optimization algorithms

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-ch...

Descripción completa

Detalles Bibliográficos
Autor principal: Yang, Xin-She
Lenguaje:eng
Publicado: Elsevier Science 2014
Materias:
Acceso en línea:http://cds.cern.ch/record/1668173
_version_ 1780935475334217728
author Yang, Xin-She
author_facet Yang, Xin-She
author_sort Yang, Xin-She
collection CERN
description Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning
id cern-1668173
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2014
publisher Elsevier Science
record_format invenio
spelling cern-16681732021-04-21T21:14:51Zhttp://cds.cern.ch/record/1668173engYang, Xin-SheNature-inspired optimization algorithmsComputing and Computers Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning Elsevier Scienceoai:cds.cern.ch:16681732014
spellingShingle Computing and Computers
Yang, Xin-She
Nature-inspired optimization algorithms
title Nature-inspired optimization algorithms
title_full Nature-inspired optimization algorithms
title_fullStr Nature-inspired optimization algorithms
title_full_unstemmed Nature-inspired optimization algorithms
title_short Nature-inspired optimization algorithms
title_sort nature-inspired optimization algorithms
topic Computing and Computers
url http://cds.cern.ch/record/1668173
work_keys_str_mv AT yangxinshe natureinspiredoptimizationalgorithms