Cargando…

Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions

Detalles Bibliográficos
Autores principales: Sario, Leo, Nakai, Mitsuru, Wang, Cecilia, Chung, Lung Ock
Lenguaje:eng
Publicado: Springer 1977
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BFb0064417
http://cds.cern.ch/record/1690856
_version_ 1780935655926267904
author Sario, Leo
Nakai, Mitsuru
Wang, Cecilia
Chung, Lung Ock
author_facet Sario, Leo
Nakai, Mitsuru
Wang, Cecilia
Chung, Lung Ock
author_sort Sario, Leo
collection CERN
id cern-1690856
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1977
publisher Springer
record_format invenio
spelling cern-16908562021-04-21T21:13:06Zdoi:10.1007/BFb0064417http://cds.cern.ch/record/1690856engSario, LeoNakai, MitsuruWang, CeciliaChung, Lung OckClassification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functionsMathematical Physics and MathematicsSpringeroai:cds.cern.ch:16908561977
spellingShingle Mathematical Physics and Mathematics
Sario, Leo
Nakai, Mitsuru
Wang, Cecilia
Chung, Lung Ock
Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title_full Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title_fullStr Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title_full_unstemmed Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title_short Classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
title_sort classification theory of riemannian manifolds: harmonic, quasiharmonic and biharmonic functions
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/BFb0064417
http://cds.cern.ch/record/1690856
work_keys_str_mv AT sarioleo classificationtheoryofriemannianmanifoldsharmonicquasiharmonicandbiharmonicfunctions
AT nakaimitsuru classificationtheoryofriemannianmanifoldsharmonicquasiharmonicandbiharmonicfunctions
AT wangcecilia classificationtheoryofriemannianmanifoldsharmonicquasiharmonicandbiharmonicfunctions
AT chunglungock classificationtheoryofriemannianmanifoldsharmonicquasiharmonicandbiharmonicfunctions