Cargando…

Resurrecting Quadratic Inflation in No-Scale Supergravity in Light of BICEP2

The magnitude of primordial tensor perturbations reported by the BICEP2 experiment is consistent with simple models of chaotic inflation driven by a single scalar field with a power-law potential \propto \phi^n: n \simeq 2, in contrast to the WMAP and Planck results, which favored models resembling...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellis, John, García, Marcos A.G., Nanopoulos, Dimitri V., Olive, Keith A.
Lenguaje:eng
Publicado: 2014
Materias:
Acceso en línea:https://dx.doi.org/10.1088/1475-7516/2014/05/037
http://cds.cern.ch/record/1691136
Descripción
Sumario:The magnitude of primordial tensor perturbations reported by the BICEP2 experiment is consistent with simple models of chaotic inflation driven by a single scalar field with a power-law potential \propto \phi^n: n \simeq 2, in contrast to the WMAP and Planck results, which favored models resembling the Starobinsky R + R^2 model if running of the scalar spectral index could be neglected. While models of inflation with a quadratic potential may be constructed in simple N=1 supergravity, these constructions are more challenging in no-scale supergravity. We discuss here how quadratic inflation can be accommodated within supergravity, focussing primarily on the no-scale case. We also argue that the quadratic inflaton may be identified with the supersymmetric partner of a singlet (right-handed) neutrino, whose subsequent decay could have generated the baryon asymmetry via leptogenesis.