Cargando…
Introduction to algebraic independence theory
In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebrai...
Autores principales: | , |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2001
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/b76882 http://cds.cern.ch/record/1691381 |
Sumario: | In the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject. |
---|