Cargando…
Borcherds products on O(2,l) and Chern classes of Heegner divisors
Around 1994 R. Borcherds discovered a new type of meromorphic modular form on the orthogonal group $O(2,n)$. These "Borcherds products" have infinite product expansions analogous to the Dedekind eta-function. They arise as multiplicative liftings of elliptic modular forms on $(SL)_2(R)$. T...
Autor principal: | Bruinier, Jan H |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
2002
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/b83278 http://cds.cern.ch/record/1691437 |
Ejemplares similares
-
Heegner divisors and non-holomorphic modular forms
por: Funke, J
Publicado: (2001) -
Heegner points and Rankin L-series
por: Levy, Silvio, et al.
Publicado: (2004) -
Heegner modules and elliptic curves
por: Brown, Martin L
Publicado: (2004) -
The divisor class group of a Krull domain
por: Fossum, Robert M
Publicado: (1973) -
Divisor theory
por: Edwards, Harold M
Publicado: (1990)