Cargando…

Traces of differential forms and Hochschild homology

This monograph provides an introduction to, as well as a unification and extension of the published work and some unpublished ideas of J. Lipman and E. Kunz about traces of differential forms and their relations to duality theory for projective morphisms. The approach uses Hochschild-homology, the d...

Descripción completa

Detalles Bibliográficos
Autor principal: Hübl, Reinhold
Lenguaje:eng
Publicado: Springer 1989
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BFb0098406
http://cds.cern.ch/record/1691452
Descripción
Sumario:This monograph provides an introduction to, as well as a unification and extension of the published work and some unpublished ideas of J. Lipman and E. Kunz about traces of differential forms and their relations to duality theory for projective morphisms. The approach uses Hochschild-homology, the definition of which is extended to the category of topological algebras. Many results for Hochschild-homology of commutative algebras also hold for Hochschild-homology of topological algebras. In particular, after introducing an appropriate notion of completion of differential algebras, one gets a natural transformation between differential forms and Hochschild-homology of topological algebras. Traces of differential forms are of interest to everyone working with duality theory and residue symbols. Hochschild-homology is a useful tool in many areas of k-theory. The treatment is fairly elementary and requires only little knowledge in commutative algebra and algebraic geometry.