Cargando…

Frobenius and separable functors for generalized module categories and nonlinear equations

Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of se...

Descripción completa

Detalles Bibliográficos
Autores principales: Caenepeel, Stefaan, Militaru, Gigel, Zhu, Shenglin
Lenguaje:eng
Publicado: Springer 2002
Materias:
Acceso en línea:https://dx.doi.org/10.1007/b83849
http://cds.cern.ch/record/1691565
_version_ 1780935781103173632
author Caenepeel, Stefaan
Militaru, Gigel
Zhu, Shenglin
author_facet Caenepeel, Stefaan
Militaru, Gigel
Zhu, Shenglin
author_sort Caenepeel, Stefaan
collection CERN
description Doi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The exposé is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras.
id cern-1691565
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 2002
publisher Springer
record_format invenio
spelling cern-16915652021-04-21T21:08:54Zdoi:10.1007/b83849http://cds.cern.ch/record/1691565engCaenepeel, StefaanMilitaru, GigelZhu, ShenglinFrobenius and separable functors for generalized module categories and nonlinear equationsMathematical Physics and MathematicsDoi-Koppinen Hopf modules and entwined modules unify various kinds of modules that have been intensively studied over the past decades, such as Hopf modules, graded modules, Yetter-Drinfeld modules. The book presents a unified theory, with focus on categorical concepts generalizing the notions of separable and Frobenius algebras, and discussing relations with smash products, Galois theory and descent theory. Each chapter of Part II is devoted to a particular nonlinear equation. The exposé is organized in such a way that the analogies between the four are clear: the quantum Yang-Baxter equation is related to Yetter-Drinfeld modules, the pentagon equation to Hopf modules, and the Long equation to Long dimodules. The Frobenius-separability equation provides a new viewpoint to Frobenius and separable algebras.Springeroai:cds.cern.ch:16915652002
spellingShingle Mathematical Physics and Mathematics
Caenepeel, Stefaan
Militaru, Gigel
Zhu, Shenglin
Frobenius and separable functors for generalized module categories and nonlinear equations
title Frobenius and separable functors for generalized module categories and nonlinear equations
title_full Frobenius and separable functors for generalized module categories and nonlinear equations
title_fullStr Frobenius and separable functors for generalized module categories and nonlinear equations
title_full_unstemmed Frobenius and separable functors for generalized module categories and nonlinear equations
title_short Frobenius and separable functors for generalized module categories and nonlinear equations
title_sort frobenius and separable functors for generalized module categories and nonlinear equations
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/b83849
http://cds.cern.ch/record/1691565
work_keys_str_mv AT caenepeelstefaan frobeniusandseparablefunctorsforgeneralizedmodulecategoriesandnonlinearequations
AT militarugigel frobeniusandseparablefunctorsforgeneralizedmodulecategoriesandnonlinearequations
AT zhushenglin frobeniusandseparablefunctorsforgeneralizedmodulecategoriesandnonlinearequations