Cargando…

Classical Diophantine equations

The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is m...

Descripción completa

Detalles Bibliográficos
Autor principal: Talent, Ross
Lenguaje:eng
Publicado: Springer 1993
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BFb0073786
http://cds.cern.ch/record/1691569
_version_ 1780935781974540288
author Talent, Ross
author_facet Talent, Ross
author_sort Talent, Ross
collection CERN
description The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.
id cern-1691569
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1993
publisher Springer
record_format invenio
spelling cern-16915692021-04-21T21:08:52Zdoi:10.1007/BFb0073786http://cds.cern.ch/record/1691569engTalent, RossClassical Diophantine equationsMathematical Physics and MathematicsThe author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, now that the book appears in English, close studyand emulation. In particular those emphases allow him to devote the eighth chapter to an analysis of the interrelationship of the class number of algebraic number fields involved and the bounds on the heights of thesolutions of the diophantine equations. Those ideas warrant further development. The final chapter deals with effective aspects of the Hilbert Irreducibility Theorem, harkening back to earlier work of the author. There is no other congenial entry point to the ideas of the last two chapters in the literature.Springeroai:cds.cern.ch:16915691993
spellingShingle Mathematical Physics and Mathematics
Talent, Ross
Classical Diophantine equations
title Classical Diophantine equations
title_full Classical Diophantine equations
title_fullStr Classical Diophantine equations
title_full_unstemmed Classical Diophantine equations
title_short Classical Diophantine equations
title_sort classical diophantine equations
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/BFb0073786
http://cds.cern.ch/record/1691569
work_keys_str_mv AT talentross classicaldiophantineequations