Cargando…
On Artin's conjecture for odd 2-dimensional representations
The main topic of the volume is to develop efficient algorithms by which one can verify Artin's conjecture for odd two-dimensional representations in a fairly wide range. To do this, one has to determine the number of all representations with given Artin conductor and determinant and to compute...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
1994
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BFb0074106 http://cds.cern.ch/record/1691600 |
_version_ | 1780935788720029696 |
---|---|
author | Frey, Gerhard |
author_facet | Frey, Gerhard |
author_sort | Frey, Gerhard |
collection | CERN |
description | The main topic of the volume is to develop efficient algorithms by which one can verify Artin's conjecture for odd two-dimensional representations in a fairly wide range. To do this, one has to determine the number of all representations with given Artin conductor and determinant and to compute the dimension of a corresponding space of cusp forms of weight 1 which is done by exploiting the explicit knowledge of the operation of Hecke operators on modular symbols. It is hoped that the algorithms developed in the volume can be of use for many other problems related to modular forms. |
id | cern-1691600 |
institution | Organización Europea para la Investigación Nuclear |
language | eng |
publishDate | 1994 |
publisher | Springer |
record_format | invenio |
spelling | cern-16916002021-04-21T21:08:38Zdoi:10.1007/BFb0074106http://cds.cern.ch/record/1691600engFrey, GerhardOn Artin's conjecture for odd 2-dimensional representationsMathematical Physics and MathematicsThe main topic of the volume is to develop efficient algorithms by which one can verify Artin's conjecture for odd two-dimensional representations in a fairly wide range. To do this, one has to determine the number of all representations with given Artin conductor and determinant and to compute the dimension of a corresponding space of cusp forms of weight 1 which is done by exploiting the explicit knowledge of the operation of Hecke operators on modular symbols. It is hoped that the algorithms developed in the volume can be of use for many other problems related to modular forms.Springeroai:cds.cern.ch:16916001994 |
spellingShingle | Mathematical Physics and Mathematics Frey, Gerhard On Artin's conjecture for odd 2-dimensional representations |
title | On Artin's conjecture for odd 2-dimensional representations |
title_full | On Artin's conjecture for odd 2-dimensional representations |
title_fullStr | On Artin's conjecture for odd 2-dimensional representations |
title_full_unstemmed | On Artin's conjecture for odd 2-dimensional representations |
title_short | On Artin's conjecture for odd 2-dimensional representations |
title_sort | on artin's conjecture for odd 2-dimensional representations |
topic | Mathematical Physics and Mathematics |
url | https://dx.doi.org/10.1007/BFb0074106 http://cds.cern.ch/record/1691600 |
work_keys_str_mv | AT freygerhard onartinsconjectureforodd2dimensionalrepresentations |