Cargando…

Finsler metrics—a global approach: with applications to geometric function theory

Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented...

Descripción completa

Detalles Bibliográficos
Autores principales: Abate, Marco, Patrizio, Giorgio
Lenguaje:eng
Publicado: Springer 1994
Materias:
Acceso en línea:https://dx.doi.org/10.1007/BFb0073980
http://cds.cern.ch/record/1691606
_version_ 1780935790016069632
author Abate, Marco
Patrizio, Giorgio
author_facet Abate, Marco
Patrizio, Giorgio
author_sort Abate, Marco
collection CERN
description Complex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.
id cern-1691606
institution Organización Europea para la Investigación Nuclear
language eng
publishDate 1994
publisher Springer
record_format invenio
spelling cern-16916062021-04-21T21:08:35Zdoi:10.1007/BFb0073980http://cds.cern.ch/record/1691606engAbate, MarcoPatrizio, GiorgioFinsler metrics—a global approach: with applications to geometric function theoryMathematical Physics and MathematicsComplex Finsler metrics appear naturally in complex analysis. To develop new tools in this area, the book provides a graduate-level introduction to differential geometry of complex Finsler metrics. After reviewing real Finsler geometry stressing global results, complex Finsler geometry is presented introducing connections, Kählerianity, geodesics, curvature. Finally global geometry and complex Monge-Ampère equations are discussed for Finsler manifolds with constant holomorphic curvature, which are important in geometric function theory. Following E. Cartan, S.S. Chern and S. Kobayashi, the global approach carries the full strength of hermitian geometry of vector bundles avoiding cumbersome computations, and thus fosters applications in other fields.Springeroai:cds.cern.ch:16916061994
spellingShingle Mathematical Physics and Mathematics
Abate, Marco
Patrizio, Giorgio
Finsler metrics—a global approach: with applications to geometric function theory
title Finsler metrics—a global approach: with applications to geometric function theory
title_full Finsler metrics—a global approach: with applications to geometric function theory
title_fullStr Finsler metrics—a global approach: with applications to geometric function theory
title_full_unstemmed Finsler metrics—a global approach: with applications to geometric function theory
title_short Finsler metrics—a global approach: with applications to geometric function theory
title_sort finsler metrics—a global approach: with applications to geometric function theory
topic Mathematical Physics and Mathematics
url https://dx.doi.org/10.1007/BFb0073980
http://cds.cern.ch/record/1691606
work_keys_str_mv AT abatemarco finslermetricsaglobalapproachwithapplicationstogeometricfunctiontheory
AT patriziogiorgio finslermetricsaglobalapproachwithapplicationstogeometricfunctiontheory