Cargando…
The classification of three-dimensional homogeneous complex manifolds
This book provides a classification of all three-dimensional complex manifolds for which there exists a transitive action (by biholomorphic transformations) of a real Lie group. This means two homogeneous complex manifolds are considered equivalent if they are isomorphic as complex manifolds. The cl...
Autor principal: | Winkelmann, Jörg |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
1995
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BFb0095837 http://cds.cern.ch/record/1691616 |
Ejemplares similares
-
Riemannian manifolds and homogeneous geodesics
por: Berestovskii, Valerii, et al.
Publicado: (2020) -
Homogeneous structures on Riemannian manifolds
por: Tricerri, F, et al.
Publicado: (1983) -
Classification of algebraic varieties and compact complex manifolds
por: Popp, Herbert
Publicado: (1974) -
New construction of homogeneous quaternionic manifolds and related geometric structures
por: Cortés, Vicente
Publicado: (2000) -
Introduction to actions of discrete groups on pseudo-Riemannian homogeneous manifolds
por: Kobayashi, T
Publicado: (2001)