Cargando…
Minimax and monotonicity
Focussing on the theory (both classical and recent) of monotone multifunctions on a (possibly nonreflexive) Banach space, this book looks at the big convexification of a multifunction; convex functions associated with a multifunction; minimax theorems as a tool in functional analysis and convex anal...
Autor principal: | |
---|---|
Lenguaje: | eng |
Publicado: |
Springer
1998
|
Materias: | |
Acceso en línea: | https://dx.doi.org/10.1007/BFb0093633 http://cds.cern.ch/record/1691651 |
Sumario: | Focussing on the theory (both classical and recent) of monotone multifunctions on a (possibly nonreflexive) Banach space, this book looks at the big convexification of a multifunction; convex functions associated with a multifunction; minimax theorems as a tool in functional analysis and convex analysis. It includes new results on the existence of continuous linear functionals; the conjugates, biconjugates and subdifferentials of convex lower semicontinuous functions, Fenchel duality; (possibly unbounded) positive linear operators from a Banach space into its dual; the sum of maximal monotone operators, and a list of open problems. The reader is expected to know basic functional analysis and calculus of variations, including the Bahn-Banach theorem, Banach-Alaoglu theorem, Ekeland's variational principle. |
---|